1-Minute Summary: EUFOREA Consensus on Biologics for CRSwNP with or without Asthma

Expert Name
Dr. Wytske Fokkens
Expert Affiliation
Academic Medical Centrum, University of Amsterdam
Expert Google Scholar or Orcid Url

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory condition of the sinonasal cavities [1-3]. It is frequently comorbid with asthma and both diseases share common underlying pathophysiological mechanisms driving the disease, including type 2 inflammation [3-9].

CRSwNP severely impacts quality of life and has a significant burden on society [10-12]. When symptoms are persistent or when there is a long-term need for antibiotics or systemic steroids, it is considered uncontrolled disease [13-15]. The goal of CRSwNP management is clinical control with minimal use of medication or surgery, but this is challenging [16-19]. However, type 2 inflammation-targeting biologics have entered the market for selected pheno/endotypes of asthma and may soon become available for CRSwNP patients [20-21]. Omalizumab and other biologics (anti-IL5, anti-IL5R, and anti-Il4Rα) are effective for the treatment of asthma with a type 2 inflammatory signature [20-21]. The first studies with these biologics in CRSwNP have shown promising results and a positive impact on quality of life [22-25].

Careful selection of patients is highly recommended [26]. The European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA) organised a multidisciplinary Expert Board Meeting to discuss the positioning of biologics into care pathways for CRSwNP patients with and without comorbid asthma. They have put forward 5 criteria for careful selection of patients to whom biologics should be prescribed (see Figure), as well as criteria to define the response to biological therapy after 1 year [26]. It is likely that biologics will become a valid alternative to sinus surgery [25,27].

Afbeelding met schermafbeelding Automatisch gegenereerde beschrijving

Figure: Indications for biological treatment in patients with CRSwNP: proposal of the multidisciplinary EUFOREA Expert Board Meeting (Modified from Fokkens et al [26])


  1. Hastan D, Fokkens WJ, Bachert C, et al. Chronic rhinosinusitis in Europe–an underestimated disease. A GA2LEN study. Allergy. 2011;66(9):1216‐1223.
  2. Hirsch AG, Stewart WF, Sundaresan AS, et al. Nasal and sinus symptoms and chronic rhinosinusitis in a population‐based sample. Allergy. 2017;72(2):274‐281.
  3. Khan A, Vandeplas G, Huynh T, et al. The global allergy and asthma European network (GALEN) rhinosinusitis cohort: a large European cross‐sectional study of chronic rhinosinusitis patients with and without nasal polyps. Rhinology. 2019;57(1):32‐42.
  4. Philpott CM, Erskine S, Hopkins C, et al. Prevalence of asthma, aspirin sensitivity and allergy in chronic rhinosinusitis: data from the UK National Chronic Rhinosinusitis Epidemiology Study. Respir Res. 2018;19(1):129.
  5. Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137(5):1449‐1456.e4.
  6. Langdon C, Mullol J. Nasal polyps in patients with asthma: prevalence, impact, and management challenges. J Asthma Allergy. 2016;9:45‐53.
  7. Zhang Y, Derycke L, Holtappels G, et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL‐5‐positive chronic rhinosinusitis with nasal polyps. Allergy. 2019;74(1):131‐140.
  8. De Greve G, Hellings PW, Fokkens WJ, Pugin B, Steelant B, Seys SF. Endotype‐driven treatment in chronic upper airway diseases. Clin Transl Allergy. 2017;7:22.
  9. Seys SF, Scheers H, Van den Brande P, et al. Cluster analysis of sputum cytokine‐high profiles reveals diversity in T(h)2‐high asthma patients. Respir Res 2017;18(1):39.
  10. Dudvarski Z, Djukic V, Janosevic L, Tomanovic N, Soldatovic I. Influence of asthma on quality of life and clinical characteristics of patients with nasal polyposis. Eur Arch Otorhinolaryngology 2013;270(4):1379‐1383
  11. Sahlstrand‐Johnson P, Hopkins C, Ohlsson B, Ahlner‐Elmqvist M. The effect of endoscopic sinus surgery on quality of life and absenteeism in patients with chronic rhinosinuitis ‐ a multi‐centre study. Rhinology. 2017;55(3):251‐261.
  12. Smith KA, Orlandi RR, Rudmik L. Cost of adult chronic rhinosinusitis: a systematic review. Laryngoscope. 2015;125(7):1547‐1556.
  13. Fokkens WJ, Lund VJ, Mullol J et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl. 2012;23:3 p preceding table of contents, 1‐298.
  14. Toma S, Hopkins C. Stratification of SNOT‐22 scores into mild, moderate or severe and relationship with other subjective instruments. Rhinology. 2016;54(2):129‐133.
  15. Hellings PW, Fokkens WJ, Akdis C, et al. Uncontrolled allergic rhinitis and chronic rhinosinusitis: where do we stand today? Allergy. 2013;68(1):1‐7.
  16. DeConde AS, Mace JC, Levy JM, Rudmik L, Alt JA, Smith TL. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis. Laryngoscope. 2017;127(3):550‐555.
  17. Hopkins C, Slack R, Lund V, Brown P, Copley L, Browne J. Longterm outcomes from the English national comparative audit of surgery for nasal polyposis and chronic rhinosinusitis. Laryngoscope. 2009;119(12):2459‐2465.
  18. Vlaminck S, Vauterin T, Hellings PW, et al. The importance of local eosinophilia in the surgical outcome of chronic rhinosinusitis: a 3‐year prospective observational study. Am J Rhinol Allergy. 2014;28(3):260‐264.
  19. Wei B, Liu F, Zhang J, et al. Multivariate analysis of inflammatory endotypes in recurrent nasal polyposis in a Chinese population. Rhinology. 2018;56(3):216‐226.
  20. Magnan A, Bourdin A, Prazma CM, et al. Treatment response with mepolizumab in severe eosinophilic asthma patients with previous omalizumab treatment. Allergy. 2016;71(9):1335‐1344.
  21. Pepper AN, Renz H, Casale TB, Garn H. Biologic therapy and novel molecular targets of severe asthma. J Allergy Clin Immunol Pract. 2017;5(4):909‐916.
  22. Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: focus on nasal polyposis. J Allergy Clin Immunol. 2015;136(6):1431‐1440.
  23. Gevaert P, Calus L, Van Zele T, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol. 2013;131(1):110‐6.e1.
  24. Bachert C, Mannent L, Naclerio RM, et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA 2016;315(5):469‐479.
  25. Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: randomized trial. J Allergy Clin Immunol. 2017;140(4):1024‐1031.e14.
  26. Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy. 2019;74:2312–2319
  27. Bidder T, Sahota J, Rennie C, Lund VJ, Robinson DS, Kariyawasam HH. Omalizumab treats chronic rhinosinusitis with nasal polyps and asthma together‐a real life study. Rhinology. 2018;56(1):42‐45.

30 thoughts

Leave a Reply

Your email address will not be published.